
SMART CONTRACT AUDIT

January 21st, 2022 | v.	1.0

score

100

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

1

Spool Smart Contract Audit

This document outlines the overall security of the Spool smart contracts, evaluated by Zokyo's
Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Spool smart contract codebase for
quality, security, and correctness.

There were no critical or high issues found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 100 %, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a security of the contract we at Zokyo recommend that the SpoolFi DAO put in place a
bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

Spool Smart Contract Audit

10Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

6Complete​ ​Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

. . .

3

Spool Smart Contract Audit

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Spool smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite. In summary, our strategies consist largely of manual
collaboration between multiple team members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Follows best practices in efficient use of resources, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):
� BaseVesting.sol�
� SpoolBuildersVesting.sol�
� SpoolPreDAOVesting.sol�
� voSPOOL.sol

The Spool smart contract’s source code was taken from the repository provided by SpoolFi
DAO: https://github.com/SpoolFi/spool-dao-contracts

Audited commit: d623650aca76bb21aa072ecbf7dd3bcb764aea8f

Last commit (post-audit): 7a8b7735322ee8bed367016d4ab4e3df0f62617c

Auditing Strategy and Techniques Applied

. . .

4

Spool Smart Contract Audit

There were no critical or high issues found during the audit. Although certain number of
medium and low issues were discovered, they relate to the following:�

� Function can be called more than onc�
� Subtraction might revert.

After recommendations by Zokyo auditors, all issues that influence security and efficiency
were fixed by SpoolFi DAO.

EXECUTIVE Summary

. . .

5

Spool Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost, allocated incorrectly,
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Spool Smart Contract Audit

medium

Function can be called more than once.

line 41, function setVests(). It is said in comments, that function allows one to set vests once,
however there are no restrictions to that, so that the function can be called more than once.

Recommendation:
Restrict function from being called more than once or change the comments to function.

medium

Function can be called more than once.

line 45, function setVests(). It is said in comments, that function allows one to set vests once,
however there are no restrictions to that, so that the function can be called more than once.

Recommendation:
Restrict function from being called more than once or change the comments to function.

SpoolBuildersVesting.sol

SpoolPreDAOVesting.sol

Complete​ ​Analysis

. . .

7

Spool Smart Contract Audit

. . .

low

Subtraction might revert.

line 250, function _setVest(). Since there is no restrictions to re-set amount of user's tokens,

it is possible that the new amount will be less than previous. In this case, subtraction will
underflow.

Recommendation:
Verify that a passed value can’t be less, than previously recorded one.

BaseVesting.sol

8

Spool Smart Contract Audit

. . .

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

BaseVestingvoSPOOL

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of
Randomness)

PassPassRace Conditions / Front
Running

PassPassShort Address/ Parameter Attack

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

PassPass
Pool Asset Security
(backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassDelegatecall Unexpected Ether

PassPassHidden Malicious Code

PassPassExternal Contract Referencing

PassPassUnchecked CALL Return Values

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

Spool Smart Contract Audit

. . .

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

SpoolPreDAOVestingSpoolBuildersVesting

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of
Randomness)

PassPassRace Conditions / Front
Running

PassPassShort Address/ Parameter Attack

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

PassPass
Pool Asset Security
(backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassDelegatecall Unexpected Ether

PassPassHidden Malicious Code

PassPassExternal Contract Referencing

PassPassUnchecked CALL Return Values

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

10

Spool Smart Contract Audit

Contract: SpoolBuildersVesting

✓ Owner should set vests (338ms)
✓ Owner should set vests twice with different member sets (535ms)

Contract: SpoolPreDAOVesting, BaseVesting
✓ Should revert if deployment with zero spool token address (48ms)

✓ Owner should set vests (121ms)
✓ Owner should set vests twice with different amounts (478ms)
✓ Owner should set vests twice with different member sets (195ms)
✓ Owner should set vests if the negative difference from previous member totals (413ms)
✓ Owner should not set vests if numbers of participants and amounts are not equal
✓ Owner should not set vests if the user is passed twice
✓ Owner should not set vests if a vesting has already started (263ms)

✓ Owner should begin a vesting (150ms)
✓ Owner should not begin a vesting if it has already started (148ms)

✓ Should claim (486ms)
✓ Should not claim if zero amount

✓ Owner should transfer a vest (591ms)
✓ Owner should transfer a vest with a new member adding (866ms)
✓ Owner should not transfer a vest if no previous vested amount for an address

✓ Should not get the amount which a user can claim
✓ Should not claim
✓ Owner should not transfer a vest

✓ Transfer a vest

As part of our work assisting SpoolFi DAO in verifying the correctness of their contract code,
our team was responsible for writing integration tests using Truffle testing framework.

Tests were based on the functionality of the code, as well as review of the Spool contract
requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Secured team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

11

Spool Smart Contract Audit

. . .

BaseVesting 100.00 100.00 100.00

SpoolPreDAOVesting 100.00 100.00 100.00

voSPOOL 100.00 100.00 100.00

SpoolBuildersVesting 100.00 100.00 100.00

FILE % STMTS % BRANCH % FUNCS

All files 100 100100

✓ Begin a vesting
✓ Set vests

Contract: voSPOOL

✓ Owner should authorize an address
✓ Owner should not authorize a zero address
✓ No owner should not authorize an address

✓ Authorized user should mint (39ms)
✓ No authorized user should not mint

✓ Authorized user should burn (96ms)
✓ No authorized user should not burn

✓ Transfer
✓ Transfer tokens from a sender to a recipient
✓ Approval
✓ Allowance increasing
✓ Allowance decreasing

We are grateful to have been given the opportunity to work
with SpoolFi DAO.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based on
them.

Zokyo's Security Team recommends that SpoolFi DAO put in
place a bug bounty program to encourage further analysis of
the smart contract by third parties.

